Son dispositivos empleados para acelerar partículas elementales e iones hasta altas energías. Son los instrumentos de mayor tamaño y más costosos utilizados en física. Todos tienen los mismos componentes básicos: una fuente de partículas elementales o iones, un tubo donde existe un vacío parcial en el que las partículas pueden desplazarse libremente y un sistema para aumentar la velocidad de las partículas.
Las partículas cargadas se aceleran mediante un campo electrostático. Por ejemplo, situando electrodos con una gran diferencia de potencial en los extremos de un tubo en el que se había hecho el vacío, los científicos británicos John D. Cockcroft y Ernest Walton consiguieron acelerar protones hasta 250.000 electronvoltios (eV). Otro acelerador electrostático es el acelerador Van de Graaff, desarrollado a principios de la década de 1930 por el físico estadounidense Robert Jemison van de Graaff. Este acelerador emplea el mismo principio que el generador de Van de Graaff, y establece un potencial entre dos electrodos transportando cargas mediante una cinta móvil. Los aceleradores Van de Graaff modernos aceleran partículas hasta energías de 15 MeV (un megaelectronvoltio, o MeV, equivale a un millón de eV).
ACELERADOR LINEAL
El acelerador lineal, también llamado “linac”, fue concebido a finales de la década de 1920. Utiliza tensiones alternas elevadas para impulsar partículas a lo largo de una línea recta. Las partículas atraviesan una serie de tubos metálicos huecos situados dentro de un cilindro en el que se ha hecho el vacío. La tensión alterna se sincroniza de forma que la partícula sea impulsada hacia delante cada vez que pasa por un hueco entre dos tubos metálicos. En teoría, pueden construirse aceleradores lineales de cualquier energía. El más grande del mundo, situado en la Universidad de Stanford (Estados Unidos), tiene una longitud de 3,2 km. Puede acelerar electrones hasta una energía de 50 GeV (un gigaelectronvoltio, o GeV, corresponde a mil millones de eV). El acelerador lineal de Stanford está diseñado para hacer colisionar dos haces de partículas acelerados de forma consecutiva por el linac y mantenidos temporalmente en anillos de almacenamiento (véase el apartado de este artículo “Colisionadores con anillo de almacenamiento”).
CICLOTRÓN
El físico estadounidense Ernest O. Lawrence obtuvo el Premio Nobel de Física en 1939 por un avance en el diseño de aceleradores llevado a cabo a principios de la década de 1930. Lawrence desarrolló el ciclotrón, el primer acelerador circular. Es una especie de acelerador lineal arrollado en una espiral. En vez de tener muchos tubos, la máquina sólo tiene dos cámaras de vacío huecas, llamadas des, cuya forma es la de dos D mayúsculas opuestas entre sí (así: D). Un campo magnético producido por un potente electroimán hace que las partículas se muevan en una trayectoria curva. Las partículas cargadas se aceleran cada vez que atraviesan el hueco entre las des. A medida que las partículas acumulan energía, se mueven en espiral hacia el borde externo del acelerador, por donde acaban saliendo.
Cuando las partículas aceleradas en el ciclotrón alcanzan una velocidad próxima a la de la luz, su masa aumenta de modo apreciable, tal como predice la teoría de la relatividad. Esto hace que sea más difícil acelerarlas, y lleva a que los pulsos de aceleración en los huecos entre las des queden desfasados. En 1945, el físico soviético Vladímir Y. Veksler y el físico estadounidense Edwin M. McMillan sugirieron una solución a este problema. El aparato propuesto, el sincrociclotrón, se denomina a veces ciclotrón de frecuencia modulada. En este instrumento, el oscilador (generador de radiofrecuencias) que acelera las partículas alrededor de las des se ajusta automáticamente para mantenerse en fase con las partículas aceleradas; a medida que la masa de las partículas aumenta, la frecuencia de aceleración disminuye un poco para seguir su ritmo. Según aumenta la energía máxima de un sincrociclotrón, se incrementa su tamaño, porque las partículas tienen que tener más espacio donde moverse en espiral. El mayor sincrocinclotrón es el fasotrón de 6 metros del Instituto Conjunto de Investigación Nuclear de Dubna, en Rusia; acelera los protones hasta más de 700 MeV y tiene unos imanes que pesan unas 7.000 toneladas.
El ciclotrón más potente del mundo, el K1200, empezó a funcionar en 1988 en el National Superconducting Cyclotron Laboratory, de la Universidad Estatal de Michigan (Estados Unidos). Este aparato es capaz de acelerar núcleos hasta una energía cercana a los 8 gigaelectronvoltios.
BETATRÓN
Cuando se aceleran electrones, éstos experimentan un gran aumento de masa a energías relativamente bajas. Un electrón con una energía de 1 MeV tiene una masa tres veces mayor que un electrón en reposo. No es posible adaptar los sincrociclotrones a un aumento de masa tan grande. Por eso se utiliza otro tipo de acelerador cíclico, el betatrón, para acelerar electrones. El betatrón está formado por una cámara toroidal en la que se ha hecho el vacío. La cámara está situada entre los polos de un electroimán. Los electrones se mantienen en una trayectoria circular mediante un campo magnético denominado “campo de guía”. El electroimán es alimentado por una corriente alterna, y la fuerza electromotriz inducida por la variación del flujo magnético a lo largo de la órbita circular acelera los electrones. Durante el funcionamiento se modifican tanto el campo de guía como el flujo magnético para mantener constante el radio de la órbita de los electrones.
SINCROTRÓN
El sincrotrón es el miembro más reciente y con mayor potencia de la familia de aceleradores. Está formado por un tubo en forma de un gran anillo, por el que se desplazan las partículas; el tubo está rodeado de imanes que hacen que éstas se muevan por el centro del tubo. Las partículas entran en el tubo después de haber sido aceleradas a varios millones de electronvoltios. En el anillo son aceleradas en uno o más puntos cada vez que describen un círculo completo alrededor del acelerador. Para mantener las partículas en una órbita constante, las intensidades de los imanes del anillo se aumentan a medida que las partículas ganan energía. En un par de segundos, las partículas alcanzan energías superiores a 1 GeV y son expulsadas, bien para su análisis experimental directo o para lanzarlas contra blancos que producen diversas partículas elementales al ser golpeados por las partículas aceleradas. El principio del sincrotrón puede aplicarse a protones o electrones, aunque la mayoría de los grandes aparatos son sincrotrones de protones.
No hay comentarios:
Publicar un comentario